Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Viruses ; 15(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2232054

RESUMEN

Inactivated vaccines are promising tools for tackling the COVID-19 pandemic. We applied several protocols for SARS-CoV-2 inactivation (by ß-propiolactone, formaldehyde, and UV radiation) and examined the morphology of viral spikes, protein composition of the preparations, and their immunoreactivity in ELISA using two panels of sera collected from convalescents and people vaccinated by Sputnik V. Transmission electron microscopy (TEM) allowed us to distinguish wider flail-like spikes (supposedly the S-protein's pre-fusion conformation) from narrower needle-like ones (the post-fusion state). While the flails were present in all preparations studied, the needles were highly abundant in the ß-propiolactone-inactivated samples only. Structural proteins S, N, and M of SARS-CoV-2 were detected via mass spectrometry. Formaldehyde and UV-inactivated samples demonstrated the highest affinity/immunoreactivity against the convalescent sera, while ß-propiolactone (1:2000, 36 h) and UV-inactivated ones were more active against the sera of people vaccinated with Sputnik V. A higher concentration of ß-propiolactone (1:1000, 2 h) led to a loss of antigenic affinity for both serum panels. Thus, although we did not analyze native SARS-CoV-2 for biosafety reasons, our comparative approach helped to exclude some destructive inactivation conditions and select suitable variants for future animal research. We believe that TEM is a valuable tool for inactivated COVID-19 vaccine quality control during the downstream manufacturing process.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Vacunas de Productos Inactivados , COVID-19/prevención & control , Sueroterapia para COVID-19 , Vacunas contra la COVID-19 , Pandemias , Propiolactona/farmacología , SARS-CoV-2 , Formaldehído
2.
Nat Commun ; 14(1): 149, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2185821

RESUMEN

Evolution of SARS-CoV-2 in immunocompromised hosts may result in novel variants with changed properties. While escape from humoral immunity certainly contributes to intra-host evolution, escape from cellular immunity is poorly understood. Here, we report a case of long-term COVID-19 in an immunocompromised patient with non-Hodgkin's lymphoma who received treatment with rituximab and lacked neutralizing antibodies. Over the 318 days of the disease, the SARS-CoV-2 genome gained a total of 40 changes, 34 of which were present by the end of the study period. Among the acquired mutations, 12 reduced or prevented the binding of known immunogenic SARS-CoV-2 HLA class I antigens. By experimentally assessing the effect of a subset of the escape mutations, we show that they resulted in a loss of as much as ~1% of effector CD8 T cell response. Our results indicate that CD8 T cell escape represents a major underappreciated contributor to SARS-CoV-2 evolution in humans.


Asunto(s)
COVID-19 , Linfocitos T Citotóxicos , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
3.
EClinicalMedicine ; 50: 101526, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1906958

RESUMEN

Background: Vaccination remains the primary measure to prevent the spread of the SARS-CoV-2 virus, further necessitating the use of effective licensed vaccines. Methods: From Dec 25, 2020, to July 11, 2021, we conducted a multicenter, randomised, single-blind, placebo-controlled phase 3 efficacy trial of the QazCovid-in® vaccine with a 180-day follow-up period in three clinical centres in Kazakhstan. A total of 3000 eligible participants aged 18 years or older were randomly assigned (4:1) to receive two doses of the vaccine (5 µg each, 21 days apart) or placebo administered intramuscularly. QazCovid-in® is a whole-virion formaldehyde-inactivated anti-COVID-19 vaccine, adjuvanted with aluminium hydroxide. The primary endpoint was the incidence of symptomatic cases of the SARS-CoV-2 infection confirmed by RT-PCR starting from day 14 after the first immunisation. The trial was registered with ClinicalTrials.gov NCT04691908. Findings: The QazCovid-in® vaccine was safe over the 6-month monitoring period after two intramuscular immunisations inducing only local short-lived adverse events. The concomitant diseases of participants did not affect the vaccine safety. Out of 2400 vaccinated participants, 31 were diagnosed with COVID-19; 43 COVID-19 cases were recorded in 600 placebo participants with onset of 14 days after the first dose within the 180-day observation period. Only one severe COVID-19 case was identified in a vaccine recipient with a comorbid chronic heart failure. The protective efficacy of the QazCovid-in® vaccine reached 82·0% (95% CI 71.1-88.5) within the 180-day observation period. Interpretation: Two immunisations with the inactivated QazCovid-in® vaccine achieved 82·0% (95% CI 71.1-88.5) protective efficacy against COVID-19 within a 180-day follow-up period. Funding: The work was funded by the Science Committee of the Ministry of Education and Science of Kazakhstan within the framework of the Scientific and Technical Program "Development of a vaccine against coronavirus infection COVID-19". State registration number 0.0927.

4.
J Pers Med ; 12(6)2022 May 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1869683

RESUMEN

Immune evasion of SARS-CoV-2 undermines current strategies tocounteract the pandemic, with the efficacy of therapeutic virus-neutralizing monoclonal antibodies (nAbs) being affected the most. In this work, we asked whether two previously identified human cross-neutralizing nAbs, iB14 (class VH1-58) and iB20 (class VH3-53/66), are capable of neutralizing the recently emerged Omicron (BA.1) variant. Both nAbs were found to bind the Omicron RBD with a nanomolar affinity, yet they displayed contrasting functional features. When tested against Omicron, the neutralizing activity of iB14 was reduced 50-fold, whereas iB20 displayed a surprising increase in activity. Thus, iB20 is a unique representative of the VH3-53/66-class of nAbs in terms of breadth of neutralization, which establishes it as a candidate for COVID-19 therapy and prophylactics.

5.
Biochemistry (Mosc) ; 87(4): 319-330, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1784775

RESUMEN

Based on the previously developed approach, hybrid recombinant proteins containing short conformational epitopes (a.a. 144-153, 337-346, 414-425, 496-507) of the receptor-binding domain (RBD) of SARS-CoV-2 Spike protein (S protein) were synthesized in Escherichia coli cells as potential components of epitope vaccines. Selected epitopes are involved in protein-protein interactions in the S protein complexes with neutralizing antibodies and ACE2 (angiotensin-converting enzyme 2). The recombinant proteins were used for immunization of mice (three doses with 2-week intervals), and the immunogenicity of protein antigens and ability of the resulting sera to interact with inactivated SARS-CoV-2 and RBD produced in eukaryotic cells were examined. All recombinant proteins showed high immunogenicity; the highest titer in the RBD binding assay was demonstrated by the serum obtained after immunization with the protein containing epitope 414-425. At the same time, the titers of sera obtained against other proteins in the RBD and inactivated virus binding assays were significantly lower than the titers of sera obtained with the previously produced four proteins containing the loop-like epitopes 452-494 and 470-491, the conformation of which was fixed with a disulfide bond. We also studied activation of cell-mediated immunity by the recombinant proteins that was monitored as changes in the levels of cytokines in the splenocytes of immunized mice. The most pronounced increase in the cytokine synthesis was observed in response to the proteins containing epitopes with disulfide bonds (452-494, 470-491), as well as epitopes 414-425 and 496-507. For some recombinant proteins with short conformational epitopes, adjuvant optimization allowed to obtained mouse sera displaying virus-neutralizing activity in the microneutralization assay with live SARS-CoV-2 (hCoV-19/Russia/StPetersburg-3524/2020 EPI_ISL_415710 GISAID). The results obtained can be used to develop epitope vaccines for prevention of COVID-19 and other viral infections.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Disulfuros , Epítopos , Humanos , Inmunización , Ratones , Proteínas Recombinantes/genética , SARS-CoV-2
6.
EClinicalMedicine ; 39: 101078, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1439988

RESUMEN

BACKGROUND: A new inactivated whole-virion QazCovid-in® vaccine against COVID-19 was developed from SARS-CoV-2 isolated in Kazakhstan, inactivated by formaldehyde, and adjuvanted with aluminium hydroxide. Phase 1 and 2 clinical trials aimed at assessing the vaccine's safety, immunogenicity, and the duration of immunity induced by the QazCovid-in® vaccine after one or two immunisations. METHODS: From 23.09.2020 to 19.03.2021 we performed a randomised, single-blind, placebo-controlled phase 1 clinical trial and from 18.10.2020 to 17.04.2021 an open-label phase 2 clinical trials of the QazCovid-in® vaccine with a 6 months follow-up at a single centre in Almaty, the Republic of Kazakhstan. Eligible healthy adults aged 18 years and older with no history of laboratory-confirmed SARS-CoV-2 infection were randomly assigned to the treatment groups using a computerised randomisation scheme generator. In the phase 1 clinical trial, two doses of the vaccine (5 µg each) or placebo (0·9% NaCl) were administered intramuscularly to 44 subjects aged 18-50 years, 21 days apart. In the phase 2 trial, 200 healthy participants were randomised into four equal-sized groups according to the age (18-49 or ≥50 years) and either single (day 1) or double (day 1 and 21) vaccination protocol. The primary outcomes were safety and tolerability. The secondary outcome was immunogenicity. The cellular response was measured by a whole-blood cytokine release assay (phase 1 only). The trials were registered with ClinicalTrials.gov NCT04530357. FINDINGS: The QazCovid-in® vaccine was safe and well-tolerated and induced predominantly mild adverse events; no serious or severe adverse events were recorded in both trials. In the phase 1 trial, the percentage of subjects with a fourfold increase of antibody titres (sero conversion) in MNA was 59% after one vaccine dose and amounted to 100% after two doses. Neutralizing antibody titres reached the geometric mean titre (GMT) of 100 after administration of two doses. A statistically significant increase in the levels of pro-inflammatory cytokines after vaccination indicated the Th1-biased response. On day 180, 40% of placebo-treated subjects demonstrated a statistically significant increase in the levels of antibodies measured by both ELISA and MNA, which suggests the infection with SARS-CoV-2. In the phase 2 trial, 100% of subjects aged 18-49 years seroconverted for SARS-CoV-2 on day 21 after the first dose, as indicated by MNA yielding the GMTs of 32 or 30 in the one- and two-dose groups, respectively. Amongst ≥50-year-old subjects, the number of sero conversions in the two- and one-dose groups on day 21 was 94% and 92% with the respective GMTs of 25 and 24. After the second dose, the sero conversion rate reached 100%; however, the GMT was significantly lower when compared with the corresponding value measured in subjects aged 18-49 years (83 vs 143). In both trials, specific antibodies were detected in MNA and ELISA on study day 180, but the titres dropped in comparison to day 42. The results of this study serve as the rationale for the phase 3 study. INTERPRETATION: The QazCovid-in® vaccine is safe and well-tolerated and promotes pronounced humoral immunity which lasts for at least 6 months after double intramuscular immunisation. FUNDING: The work was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan within the framework of the Scientific and Technical Program "Development of a vaccine against coronavirus infection COVID-1900 . State registration number ?.0927.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA